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Abstract Non-uniform sampling (NUS) has been estab-

lished as a route to obtaining true sensitivity enhancements

when recording indirect dimensions of decaying signals in

the same total experimental time as traditional uniform

incrementation of the indirect evolution period. Theory and

experiments have shown that NUS can yield up to two-fold

improvements in the intrinsic signal-to-noise ratio (SNR)

of each dimension, while even conservative protocols can

yield 20–40 % improvements in the intrinsic SNR of NMR

data. Applications of biological NMR that can benefit from

these improvements are emerging, and in this work we

develop some practical aspects of applying NUS nD-NMR

to studies that approach the traditional detection limit of

nD-NMR spectroscopy. Conditions for obtaining high NUS

sensitivity enhancements are considered here in the context

of enabling 1H,15N-HSQC experiments on natural abun-

dance protein samples and 1H,13C-HMBC experiments on

a challenging natural product. Through systematic studies

we arrive at more precise guidelines to contrast sensitivity

enhancements with reduced line shape constraints, and

report an alternative sampling density based on a quarter-

wave sinusoidal distribution that returns the highest fidelity

we have seen to date in line shapes obtained by maximum

entropy processing of non-uniformly sampled data.

Keywords Non-uniform sampling � Maximum entropy

reconstruction � Ubiquitin � Natural products

Introduction

Extending the detection limit of nuclear magnetic reso-

nance spectroscopy (NMR) is yielding exciting returns.

Dynamic nuclear polarization promises to transform stud-

ies of biological solids, while microcoil and cryogenic

probe technologies permit challenging multi-dimensional

spectroscopy on unprecedented mass-sensitivities on the

order of 1–100 lg for important small molecules such as

natural products and metabolites (Hilton and Martin 2010).

Continued instrumentation innovations can be expected to

yield more returns on improving signal detection, but

recent work has shed light on extending the detection limit

of multi-dimensional NMR spectroscopy by non-uniform

sampling (NUS) (Rovnyak et al. 2011; Paramasivam et al.

2012; Waudby and Christodoulou 2012; Qiang 2011;

Kumar et al. 1991; Hyberts et al. 2010, 2013). Specifically,

for the case of NUS of selecting a subset of samples

(termed a sampling schedule) from a uniform Nyquist grid,

exact theory and experimental verifications show that NUS

data of decaying signals experience an enhanced intrinsic

signal-to-noise ratio (iSNR) on the order of up to two fold

over uniformly sampled data in the same experimental time

(Rovnyak et al. 2011; Paramasivam et al. 2012). The

intrinsic SNR (iSNR) in the time domain of uniform data is

defined here as the ratio of the area of the signal envelope

to the square root of the evolution time prior to any post-

acquisition signal processing. This definition is easily

extended to NUS and is equivalent to the familiar ratio of

the integrated peak area to the r.m.s. noise in the frequency

domain. The NUS-based iSNR gains have been correlated
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with the ability to detect new signals (Rovnyak et al. 2011;

Paramasivam et al. 2012; Hyberts et al. 2013) and early

applications suggest that bio-solids NMR (Paramasivam

et al. 2012) as well as solution NMR of natural products

(Palmer et al. 2013) stand to reap some of the best gains

from this approach, including by taking the best advantage

of compounding the sensitivity enhancement in multiple

indirect dimensions (Paramasivam et al. 2012; Hyberts

et al. 2013).

Tailoring data acquisition to the regions of the signal

envelope in which the signal intensity is highest is an

established concept for improving sensitivity in a given

time (Levitt et al. 1984) Obtaining sensitivity benefits in

2D-NMR using exponential NUS fulfills this criterion and

was first noted over 20 years ago, including protein

applications (Barna et al. 1986, 1987). Subsequently,

enhanced SNR by NUS in indirect evolution periods was

described for the practice of acquiring all indirect incre-

ments uniformly but with a non-uniform distribution of the

number of transients (Kumar et al. 1991) a practice

sometimes termed non-uniform weighted sampling

(NUWS) which is seeing renewed interest (Waudby and

Christodoulou 2012; Qiang 2011). Estimates of SNR

enhancements were later refined by the exact solution

(Rovnyak et al. 2011). Specifically, the NUS-based

enhancement may be exactly calculated for a signal

decaying with a time constant T2 as (Paramasivam et al.

2012).

g ¼
v
R tmax

0
h tð Þe�t=T2 dt

T2ð1� e�tmax=T2Þ ð1Þ

where v is a scaling factor which enforces equal total

experimental times for NUS and uniform sampling (US)

experiments, h(t) is the density of nonuniform samples, T2

is the decay constant of the signal, and tmax is the time

corresponding to the last recorded sample. For an expo-

nential sampling density, hðtÞ ¼ e�t=TSMP where TSMP is the

decay constant of the sampling density. If the density of

samples is matched to the decay of the signal (a.k.a.

‘matched NUS’) then hðtÞ ¼ e�t=T2 and Eq. (1) shows that

the NUS-based iSNR enhancement can be as high as about

1.7 versus uniform sampling (Fig. 1).

If the density of samples is biased to decay more quickly

than the T2 signal decay, say twice as fast (labeled ‘2X’ in

Fig. 1), then this has the effect of concentrating a greater

number of samples at earlier times, for which the NUS-

based iSNR enhancement versus uniform sampling can

reach up to about two-fold. Biasing the exponential NUS

schedule even more steeply, such as to three or four times

the T2 decay, delivers some incremental additional

enhancements but approaches the effect of truncating the

signal and sacrificing resolution in the process. For these

reasons, biased exponential NUS of no more than about

two fold is the recommended limit. However it is inter-

esting to consider that there may be some exceptions to this

rule of thumb when more steeply biased densities may still

be desired.

In two indirect NUS dimensions, compounded NUS

enhancements can be realized on the order of three- to four-

fold and were recently tested and found to be consistent

with predictions based on compounding Eq. (1) (Param-

asivam et al. 2012). Since the key strategy is to concentrate

data samples at regions where the signal is high, NUS-

based sensitivity enhancement is only applicable to signals

with a non-constant amplitude during evolution. Thus NUS

cannot yield any enhancements of constant time (CT)

evolution periods, although the time savings of using NUS

in CT dimensions remains an important incentive for its

use (Schmieder et al. 1994). And while NUS-based signal

enhancements have so far been applied and developed for

exponentially decaying signals, it is equally feasible to

obtain an iSNR enhancement from signals that experience

other non-constant amplitude profiles.

As NUS has matured into a robust sampling technique

which can be paired with a variety of spectral reconstruc-

tion tools, a great deal of effort has been directed upon

achieving significantly shorter overall experimental times

for recording information-rich multi-dimensional NMR

spectra. A long-standing rule of thumb for NUS practice is

that it should be applied in situations where uniform

sampling would also have enough sensitivity. With the

realization now that NUS can have considerably higher

intrinsic SNR over uniform sampling and thereby lead to

the ability to detect new peaks, the opportunity arises to

consider how to configure NUS to extend the sensitivity
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Fig. 1 Exact intrinsic SNR enhancements computed with Eq. (1) of

the time domain of an exponential signal acquired through non-

uniform sampling with an exponentially weighted density that equals

the signal decay (matched) or which is biased to even shorter times

(exponential weighting two, three or of our times the decay rate of the

signals, e.g. 29, 39, or 49). The NUS-based improvements are most

compelling at long times, while diminishing returns are encountered

when the exponential weight is about three times the signal decay
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limit of multi-dimensional NMR and to try to better

understand constraints upon realizing these enhancements.

This work will investigate applications of NUS-based

signal enhancements on a natural abundance protein sam-

ple (2D 1H,15N-HSQC) and on a plant natural product (2D
1H,13C-HMBC, 1H-13C-HSQC). Biasing the exponential

NUS density to shorter times to improve enhancements is

contrasted with reduced constraints on the line shape, while

an alternative quarter-wave sinusoidal density is shown to

provide both favorable enhancements and exact line shapes

in conjunction with maximum entropy reconstruction for

processing the NUS data. Using NUS-based iSNR

enhancements, screening natural abundance proteins for
1H,15N-HSQC folding fingerprints becomes much more

feasible, while challenging natural products become more

accessible to nD-NMR.

Results

Strictly, the NUS-based enhancement is obtained relative

to T2*, which describes the measured signal envelope. For

convenience, just T2 will be denoted herein. Some nota-

tional conventions will be introduced to facilitate describ-

ing paths to achieving NUS-based time domain iSNR

enhancements. First, Eq. (1) predicts that the time domain

iSNR of NUS can be increased further if the NUS density

is biased to shorter times by setting the time constant

TSMP \ T2, where TSMP is the decay constant of the NUS

exponential density. Matched exponential NUS corre-

sponds to TSMP = T2, while setting TSMP \ T2 is termed

biased exponential NUS. It is also convenient to recast the

choice of the NUS exponential density in terms of equiv-

alent line widths (units of Hz). For example, for a signal

decay yielding a line width of 4 Hz then matched NUS

would correspond to choosing an NUS sampling density

that also decays at the same rate of 4 Hz = 1/(pTSMP). A

biased exponential NUS density can then be described in

convenient and more relatable line width units. To bias the

NUS schedule to earlier times, a shorter TSMP could be

chosen to yield 8 Hz = 1/pTSMP. We use the notation of

referring to 8 Hz NUS schedules, or 4 Hz NUS schedules

and so on. Finally, we also adopt the notation of referring

to biased exponential NUS according to the ratio between

the sampling decay line width and the signal linewidth. For

example, 2X biased NUS means the sampling line width is

two fold greater than the signal line width (e.g. if the NUS

schedule follows an 8 Hz decay and the signal line width is

4 Hz). See Fig. 1 again for use of these terms. In this work,

all NUS spectra are processed with maximum entropy

reconstruction (MaxEnt) implemented in the Rowland

NMR toolkit (http://rnmrtk.uchc.edu) (Hoch and Stern

1996). While many superb algorithms exist for obtaining

spectral estimates from NUS data, MaxEnt has been used

for at least two decades as a high fidelity algorithm for

obtaining spectral estimates from NUS data (Hoch and

Stern 1996; Stern et al. 2002; Hoch et al. 2014).

The potential to apply NUS for iSNR enhancement in

liquid phase biomolecular NMR of proteins is considered

first. It should be appreciated from Fig. 1 that the most

compelling iSNR enhancements are obtained by NUS rel-

ative to uniform sampling when the evolution time is long

compared to T2. When performing three-dimensional

experimentation, such as for 1H,13C, and 15N backbone

assignments, achieving evolution times even on the order

of T2 in certain biomolecular experimentation is nearly

intractable, even with the aid of NUS (Rovnyak et al.

2004). Furthermore, NUS-based enhancements cannot be

obtained in any constant-time dimension since the basis for

NUS enhancements requires tailoring the density of sam-

ples to a non-constant signal envelope (Kumar et al. 1991;

Levitt et al. 1984). Given the twin concerns of the preva-

lence of constant-time evolution periods in 3D bioNMR

experiments, and the difficulty to achieve evolution times

on the same order as T2, other applications of NUS-based

signal enhancements should be considered at this time.

Contrasting sensitivity and line shape in NUS

One opportunity for exploiting NUS-based enhancements

lies in performing 2D 1H-15N HSQC spectroscopy of pro-

tein samples prepared with natural abundance levels of all

isotopes. In 2D NMR it is much more straightforward to

reach long evolution times in order to obtain high resolu-

tion and thereby enter the regime where NUS significantly

out-performs uniform sampling (Fig. 1). Eliminating

enrichment by 15N provides cost savings and would make it

more feasible to screen larger numbers of samples if

spectra could be obtained in relatively short total times. A

natural abundance sample of human ubiquitin was prepared

to a concentration of about 6 mM and subjected to a sys-

tematic set of 1H,15N-HSQC experiments at 600 MHz

using a room-temperature probe. The high concentration

(6 mM) mimics the use of a much lower concentration in a

spectrometer equipped with a cryogenic probe. Further,

given the increasing installed base of 700 MHz and higher

fields, the results presented here are somewhat conserva-

tive, and users can expect improved results at higher fields.

A systematic set of experiments was designed to con-

trast uniform and non-uniform sampling for long evolution

times and for a range of different exponential NUS den-

sities in 1H,15N-HSQC NMR. Total evolution times of

0.128 and 0.191 s were chosen and corresponded to 256

uniform increments and 384 uniform increments, respec-

tively. Non-uniform sampling retained 25 % of the samples

according to exponential densities of 4, 6, 8 and 10 Hz.
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Given that a reasonable estimate of the total signal decay in

this case (e.g. T2*) would correspond to 3–4 Hz, the 4 Hz

schedule is approximately a matched NUS schedule,

whereas the 6 Hz schedule is approximately a 29 biased

schedule, while the 8 and 10 Hz schedules explore more

severe biasing of the NUS density to short times. It also

follows from the line width considerations that a 0.128 s

evolution lies between 1.5 and 2 T2* and the 0.193 s

evolution falls between 2.5 and 3T2*.

It will be seen that NUS presents an improved route to

obtaining sensitive HSQC spectra on natural abundance

proteins. However first, contrasting FFT processing of

uniform data to MaxEnt processing of matched exponential

NUS data (Fig. 2) supports two key concepts in NUS-based

sensitivity enhancement (Rovnyak et al. 2011; Paramasi-

vam et al. 2012; Kumar et al. 1991; Hyberts et al. 2013;

Palmer et al. 2013; Rovnyak et al. 2004). Simultaneously

extending the evolution time of uniform sampling and the

total experimental time (Fig. 2a, b) will only decrease the

iSNR for all samples acquired beyond 1.26 T2 (Rovnyak

et al. 2004). Thus it is a serious limitation of uniform

sampling that high resolution can only be obtained at the

expense of iSNR. In contrast, Fig. 2b, c establishes, con-

sistent with theory, that iSNR increases by exponential

NUS if evolution time is simultaneously increased with

experimental time. It is difficult to make any case for

performing uniform sampling if the total evolution time

will extend beyond 1.26 T2. It should also be recognized

from Fig. 2 that NUS-based enhancements are more sig-

nificant for long evolution times (Fig. 2b, d) than for mid-

range evolution times (Fig. 2a, c), another key prediction

of Eq. (1) and illustrated in Fig. 1. Some processing con-

siderations should be noted in Fig. 2. Each spectrum was

obtained with apodization (cosine squared) in the direct

dimension and employing only zero-filling in the indirect

dimension. Thus no apodization or deconvolution or any

other treatment that would change the iSNR was employed

in the indirect dimension prior to the use of the FFT or

MaxEnt algorithms. Still, the SNR values of the frequency

spectra would be misleading as they would have to be

regarded as apparent SNR values not only because the

directly acquired dimension was apodized, but also because

MaxEnt has a nonlinear response that has been well doc-

umented previously (Hoch and Stern 1996; Schmieder

et al. 1997; Donoho et al. 1990). Rather, improvements are

evident through inspection of peak heights in a represen-

tative 15N cross-section as well as observing that contours

for expected cross peaks become significantly more
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Fig. 2 Contrasting uniform

sampling with matched

exponential NUS (4 Hz) for
1H,15N HSQCs of ubiquitin at

natural abundance. a,

b Extending uniform sampling

to longer indirect evolution

times by adding more

experimental time incurs

significant additional noise. a,

c Mid-range evolution times,

4 Hz weighted exponential NUS

delivers a moderate but useful

enhancement, on the order of

20–30 % as noted in Fig. 1. b, d

Much greater NUS-based

enhancement is obtained for

long evolution times, again

consistent with theoretical

predictions (Fig. 1) that indicate

a *70 % improvement.

Notably, (c) and (d) show that

extending the evolution time

with NUS along with

experimental time improves the

SNR and resolution

simultaneously
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distinguishable from noise contours in Fig. 2d, which will

be more amenable to visual and automated peak-picking

routines. That is, these data establish that many expected

peaks, which are ambiguous or undetectable relative to

noise in US spectra such as in Fig. 2a, b, are unambigu-

ously detectable above noise levels with NUS spectra (e.g.

Fig. 2c, d). In contrasting panels (c) and (d) in Fig. 2, it is

interesting to see where the additional 32 samples are

distributed. In Fig. 2d, there are now 84 samples spanning

up to sample 256, representing an increase of 20 versus

Fig. 2c. Then twelve samples span the region 257–384.

(Supporting Information section S.2).

Detailed experimental confirmations of enhancements

predicted by Eq. (1) have been established using linear

transforms such as maximum entropy interpolation (Pa-

ramasivam et al. 2012). Also, since this work will only

compare uniform to non-uniform experiments that consume

equivalent experimental times, it is possible to use the terms

SNR and sensitivity interchangeably, where sensitivity is

conventionally defined as the ratio of SNR to the square root

of experimental time (Ernst et al. 1987). Recognizing that

sensitivity is increasingly viewed as a metric for peak

detection (Hyberts et al. 2013) it is also useful to apply to the

discussion of the final processed data shown here.

The 1H,15N-HSQC is a sensitive test for the folded state

of a protein as well as for externally induced perturbations

of protein structure such as guest binding, self aggregation,

pH, changes in dynamics, and macroscopic physical fac-

tors including temperature. Although Fig. 2 supports that

non-uniform sampling enables the ability to obtain sensi-

tive 1H,15N-HSQC spectra on natural abundance proteins

on a time frame of 60–90 min, further sensitivity would

facilitate acquiring these data more efficiently. What

would be the consequences of exploiting greater expo-

nential biasing of the sampling to achieve higher

enhancements? Figure 3 illustrates a progression of
1H,15N-HSQC data from uniform sampling to steeply

biased (10 Hz exponential) NUS to better characterize the

consequences of obtaining higher enhancements at the

expense of reduced constraints on the signal at long evo-

lution times. Inspection of the detailed sampling schedules

shows that even 3x biasing begins to closely approach the

process of simply truncating the signal evolution (Palmer

et al. 2013). Cross-sections through each dimension as well

as a selected region of the 2D-spectrum strongly support

that increased bias in the exponential NUS delivers con-

tinued improvements in the sensitivity. Many peaks are

absent or ambiguous in the uniform data that are unam-

biguously realized in the spectra obtained by NUS. The

cases of severe biasing (e.g. 8 or 10 Hz) introduce some

broadening that can be seen with lower altitude contours in

the insets, but also present much more sensitive spectra

compared to 4 Hz exponential NUS.

Again, while it is not advised to discuss numerical values

of the apparent SNR in Fig. 3, it should be pointed out that

Fig. 3b–e are all processed with identical maximum entropy

parameters, and a more direct comparison between these five

spectra can be made. Specifically, the improvements

between Fig. 3b–e must be attributed to higher iSNR in the

raw time domain data since these five spectra have been

treated with equivalent processing. Since 96 samples are

selected from a grid of 384 uniform samples to span the long

evolution time of 0.191 s, even the steeply biased spectra

(Fig. 3d, e) still show high resolution despite experiencing

some broadening, where it should be added that the 384th

sample is included in every NUS schedule in Fig. 3. A closer

examination of line broadening that occurs when the expo-

nential density is heavily biased is given in Fig. 4. When the

NUS is matched or weakly biased, then the line width by

MaxEnt processing of exponential NUS is closely approxi-

mates that for FFT processing of uniform data. It is evident

from Fig. 4 that when NUS is applied conservatively

(Fig. 4a,b), then there are sufficient constraints to define the

line width correctly. As the exponential density becomes

more concentrated upon early times, the loss of samples after

about 1 T2 is too severe and line widths do increase mod-

erately, ca. 30 % in these data (Fig. 4a,c).

Sinusoidal NUS preserves line shape for conservative

NUS

The consequences of reduced constraints on the data relative

to uniform sampling should be considered further. The data

presented so far indicate that matched or weakly biased

exponential NUS do not distort the line width measured at

half height. However, when frequency spectra are recon-

structed from NUS data there is no longer a Nyquist guar-

antee on the detected bandwidth, and there are also not at this

time objective criteria for when the sparseness of samples

are sufficient to report on line widths accurately. One area of

concern is that the use of a non-uniform sampling schedule

means that the data can be more or less sensitive to certain

frequencies. For example, a particularly eccentric sampling

schedule might only sample positions on the Nyquist grid

that lie on or near to nodes of certain frequencies. More

precisely, the task of presenting a frequency spectrum from

NUS data can be described as deconvolving the Fourier

transform of the sampling schedule from the Fourier trans-

form of the uniformly sampled signal. The Fourier transform

of the sampling schedule is known as the point spread

function and is obtained as the FFT of the schedule in which

omitted samples are replaced by zeros. To date, guidelines

are being established around some key concepts of sam-

pling. If the NUS schedule is not too sparse with respect to

the number of samples on the uniform grid, if gaps are

minimized, and if the NUS schedule has random character,
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then it is found that spectral estimation techniques deliver

extremely high fidelity frequency spectra from NUS data

and folding artifacts are negligible (Hyberts et al. 2010;

Hoch et al. 2008; Mobli et al. 2012; Maciejewski et al.

2009).

As described in the previous data, when exponential

NUS is applied to exponentially decaying signals, the

resulting frequency spectra do not experience a decrease in

the line width at half maximum, if the density of samples is

approximately matched to the decay rate of the signals.

When NUS densities are strongly biased to earlier times

relative to the signal decay, then NUS begins to approxi-

mate signal truncation and line broadening due to severe

biasing of NUS relative to the signal can be measured as in

Fig. 4.

However, we began to investigate the question of

whether there might be minor systematic line shape dis-

tortions even in traditionally conservative applications of

exponential NUS. That is, could other areas of line shape
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Fig. 3 Representative one- and two-dimensional views of 1H,15N-

HSQC spectra of a 6 mM human ubiquitin sample (Aldrich, Inc.)

obtained by uniform sampling and exponential NUS. All NUS spectra

are processed by maximum entropy reconstruction in the Rowland

NMR Toolkit. http://rnmrtk.uchc.edu) (Hoch and Stern 1996) Each

experiment consumed 1.5 Hr total time. Uniform acquisition

employed 384 increments with 4 transients per increment, while NUS

employed 96 exponentially distributed samples according to the

indicated decays (expressed as line widths, see text) with 16 transients

per increment

125.126. 124. 123.127.
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Uniform,FFT(a) 4 Hz NUS
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Fig. 4 A comparison of 15N line shapes in the indirect dimension of

the 2D-HSQC spectra in Fig. 3 from FFT processing of uniform data

and MaxEnt processing of exponential NUS data. Line shapes are

closely conserved when the NUS density is approximately matched or

weakly biased (a, b), but begin to exhibit broadening to the significant

reduction in samples at long times when the exponential density is

strongly biased to early times (c, d)
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quality be affected by reduced constraints even if line

widths are correctly obtained? Broadly, it is of interest to

identify alternative sampling densities that have intrinsic

NUS-based enhancements similar to exponential NUS

densities, but which do not decay as quickly as the expo-

nential decay. Indeed some have reported favorable expe-

riences with Gaussian-distributed NUS (Qiang 2011; Eddy

et al. 2012) which does achieve a greater distribution of

samples at longer evolution times compared to exponential

NUS (Fig. 5). However, if the Gaussian density is matched

to the line width of the decay, as is done with exponential

densities, then the intrinsic SNR enhancement by Eq. (1)

for a Gaussian is somewhat less than for exponential NUS

(enhancements of about 1.6 and 1.7 respectively).

We sought a monotonic function for a sampling density

that could achieve a theoretical enhancement similar to an

exponential density, while also distributing samples to

longer times like the Gaussian. We report here on the use

of a sampling density which is defined as the quarter-wave

portion of a sine function which spans p to 3p/2. (Fig. 5)

Following Eq. (1) the sinusoidal density will give an

enhancement essentially identical to that for a matched

exponential density for an acquisition which spans *3T2,

but yet the sinusoidal sampling density localizes many

more samples in the region of T2–2T2 closely following the

Gaussian function in this region. Although in theory and in

practice the sinusoidal density will have fewer samples at

the very end of the evolution period ca. 3T2, this region is

so sparsely sampled in both densities that the sinusoidal

and exponential densities are nearly equivalent in this

regime.

We conducted an analysis of line shapes for synthetic

signals injected into real acquired spectrometer noise that

has been validated by us previously to be white and

Gaussian. These data are essentially indistinguishable from

measured data for this reason but allow us to carefully

control line width, intensity and evolution parameters. Line

shapes were analyzed for signals sampled to 3T2 by uniform,

matched exponential and sinusoidal sampling. Frequency

spectra were obtained by processing the uniform data by

FFT, and the exponential and quarter-wave sinusoidal NUS

data by maximum entropy reconstruction (Fig. 6).

A grid of different NUS conditions and densities is

considered in Fig. 6. Comparing the rows first, in Fig. 6a, a

closely spaced doublet emulates crowded spectra (separa-

tion is 1.5 the line width), and exponential NUS results in

noticeable broadening near the baseline of the peaks.

Similar observations have been reported in the past for

MaxEnt processing of closely spaced doublets (Kubat et al.

2007). In Fig. 6b, a singlet with strong SNR is examined

and there is only negligible baseline broadening; yet when

there is more noise and more data reduction (128 samples

chosen from a grid of 1,024) as in Fig. 6c, then there is

again visible a small degree of broadening by exponential

NUS. To contrast the performance of sinusoidal NUS with

exponential NUS, consider next the columns of Fig. 6.

Again, the first column shows that exponential NUS can

broaden particularly the regions near the bases of peaks, to

different degrees depending on spectral crowding, SNR

and sparsity of the NUS schedule. The middle column in

Fig. 6 illustrates that sinusoidal NUS always results in a

narrower base of the peaks in every case. The right-most

column of Fig. 6 shows that sinusoidal sampling with

MaxEnt reconstruction provides peak shapes that are

essentially coincident with those obtained by FFT pro-

cessing of uniform sampling in all cases considered here.

The results of the tests illustrated in Fig. 6 indicate that

the reduced constraints of NUS can have small impacts on

other aspects of the line shape besides the line width at half

height. It is of interest that these minor effects are predicted

to be more noticeable in crowded regions of spectra, and so

we turned to 2D-NMR of a plant natural product to see if

the predicted effects from simulations would manifest in a

challenging application of NUS. Selected crowded regions

in 2D-HMBC and 2D-HSQC spectra are shown in Fig. 7

for uniform, sinusoidal NUS and matched exponential

NUS in the indirect dimension (details in figure caption). In

all cases the directly acquired dimension is processed by

FFT, while the indirect dimension was processed either by

FFT for the uniform case or by MaxEnt reconstruction for

the NUS cases.
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Fig. 5 Comparison of sampling densities normalized such that the

areas under the densities are equivalent, which means they each

correspond to the same number of samples. Gaussian and exponential

densities are adjusted to correspond to frequency domain line widths

of pT2. The sinusoidal density refers to the p–3p/2 segment of a sine

function (i.e. the inverted 0–p/2 segment of sine)
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An inspection of the data in Fig. 7 shows that the NUS

trials resulted in stronger peaks relative to uniform sam-

pling in the same total experimental time, as expected.

However, a closer view of the indicated inset regions in

Fig. 7ab from crowded areas of the spectra reveals that

low-altitude contours on neighboring peaks show much

more broadening in the indirect dimension of the spectrum

obtained by exponential NUS than in the spectrum

obtained by sinusoidal NUS. Representative 13C one-

dimensional cross-sections of the indirect frequency

dimensions provide an even closer look at the effect of

including more samples at longer times with sinusoidal

NUS. The cross-sections, which include doublet features in

Fig. 7a and crowding in Fig. 7b, show a striking agreement

with the simulations in Fig. 6a, confirming that the tails of

the peaks in sinusoidal NUS spectra are not as broad as

with exponential NUS. Based on the line width of about

3.7 Hz, the sinusoidal schedule has 24 additional samples

in the region 1T2*–2T2* compared to the matched expo-

nential schedule in Fig. 7a, and 27 additional samples

compared to exponential in this region for Fig. 7b,

representing significantly greater restraints on the signal at

these longer evolution times. While the improved peak

shape is recognized in Fig. 7 for this challenging real-

world application of NUS to a dilute small molecule, it is

cautioned that the peak shape changes discussed here

remain small.

Hyberts and Wagner have reported the use of half- and

quarter-wavelength sinusoidal sampling densities gapped

according to a Poisson distributions (Hyberts et al. 2010).

The half-wavelength sinusoidal Poisson gap (PG) schedule

is sparse between 1T2–2T2 in contrast to the quarter-wave

sinusoid schedules. Enhancements with PG schedules that

lead to detecting new peaks have been clearly demon-

strated, and the acquisition of many samples at very long

times does provide significant constraints on signals (Hy-

berts et al. 2013).

We devised an in-house strategy for generating sinu-

soidally distributed NUS samples on a uniform grid fol-

lowing the segment p to 3p/2 (this code is shared in the

Supplementary Information). As noted previously, there

are several interesting design challenges for generating

UNI-FFT

1.01.21.4 1.01.21.41.01.21.4

1.01.21.41.01.21.41.01.21.4

NUS-exp

NUS-sine

NUS-exp

UNI-FFT

NUS-sine

(a) 256/1024 1.5 doublet, high SNR

(b) 256/1024 singlet, high SNR

(c) 128/1024 Singlet, reduced SNR

5.2 5.0 5.2 5.0 5.2 5.0

Fig. 6 Peak broadening near

the baseline is examined for

synthetic signals injected into

real spectrometer noise for

sinusoidal and exponential NUS

and for uniform sampling.

Exponential NUS results in

broadening of the beak base

relative to uniform sampling.

Sinusoidal NUS is always seen

to give a narrower peak shape

that agrees closely with the

peaks produced from uniform

data. (NUS spectra obtained by

MaxEnt reconstruction and

uniform spectra by FFT). Row

(a) represents retaining 25 % of

samples for the NUS spectra

(256 out of a uniform grid of

1,024) and employed a doublet

separated by just 1.5 times the

line widths of the peaks. Row

(b) examines a singlet also

retaining 25 % of samples. Row

(c) examines a singlet with

lower SNR and retaining just

12.5 % of samples (128 out of a

uniform grid of 1,024)

310 J Biomol NMR (2014) 58:303–314

123



such schedules. There must be a degree of randomness in

the schedule to minimize artifacts introduced by the point

spread function (Hoch et al. 2008). Yet, the series of

discrete samples must be optimized in some fashion to

ensure that it conforms as well as reasonably possible with

the desired distribution function, since no coarse list of

samples can perfectly follow a continuously defined dis-

tribution. Also the schedule must minimize gaps, another

critical feature in optimizing NUS strategies (Hyberts et al.

2010, 2012). A python script was written for generating

quarter-wave (e.g. p–3p/2) sinusoidally distributed sam-

pling schedules, and includes several measures such as

ensuring that no samples are double counted, and ensuring

that the maximum evolution time is also sampled. In order

to fulfill the important performance criteria described

above, we decided upon a method of averaging a large

number of randomly generated schedules together. The

benefits of this simple but powerful approach are illustrated

in Fig. 8, which examines characteristics of sinusoidal

schedules obtained with no averaging (n = 1), with aver-

aging 10, and with averaging 100 randomly generated

schedules.

When only single schedules are considered (n = 1), the

enhancement of any individual schedule (which can also be

exactly calculated using a discretized approach to Eq. (1))

is found to vary widely. For example, for selecting 64

samples from a uniform grid of 1,024, the individual

schedules have iSNR enhancements from 1.5 to 1.8 due to

random deviation from the intended distribution. Not sur-

prisingly, there is more iSNR variation when contrasting

individual schedules that are very sparse. When 341 sam-

ples are retained, then there are far fewer ways to arrange

these samples and they all have enhancements between 1.5

and 1.6. Importantly, these tests show that sparser sched-

ules are able to approach the theoretical enhancement far

more closely since denser NUS schedules are forced to

have uniform tracts at early times. Similar trends are

noticed when considering the maximum gap of a given

schedule. As noted, Hyberts and Wagner have analyzed the

distribution of gaps and suggest forcing gaps to a Poisson

distribution to minimize gaps; (Hyberts et al. 2010) here

we choose as a reporter of gap distribution the analysis of

the largest gap since all remaining gaps are then smaller.

Any one schedule can result in sometimes very large

maximum gap sizes. Averaging 10 or 100 individual

schedules together forces the maximum gap to converge to

a tight range and prohibits pathologically large gaps from

occurring. In considering gaps, we now face an incentive to

retain more samples (Hyberts et al. 2012). For example the

maximum gap in a sinusoid schedule (n = 100) retaining

12.5 % of the samples (128/1,024) is guaranteed to be less

than 200, while the maximum gap for retaining 6.25 % of

the samples (64/1,024) is guaranteed to be over 200. It is

satisfying to notice that even when 100 individual sched-

ules are averaged together, the result is not deterministic.

The enhancement and maximum gap both are observed to

6.66.87.07.2
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Uniform Sine Match Exp.
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(b) HSQC
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7.2 7.0 6.8

114.5 114.5114.5115.5 115.5115.5

Uniform Sine Match Exp.
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Fig. 7 Representative 2D contour regions of a 1H,13C-HMBC spectra

and b 1H,13C-HSQC spectra (14.1 Tesla, RT probe) of a plant natural

product (Courtesy Prof. G. Henry, Susquehanna University, details in

acknowledgements). The uniform, sinusoidal and matched exponential

experiments used identical total times in each of a and b. Cross-sections

through closely spaced peaks in both cases (note scale much less than

1 ppm) show a strong agreement with findings in Fig. 6, namely that

sinusoidal sampling suppresses weak broadening near the bases of the

peaks (arrows draw attention to these regions) IN a exponential and

sinusoidal NUS each selected 351 samples from a Nyquist grid of

1,400, and in b exponential and sinusoidal NUS each selected 400

samples from a Nyquist grid of 1,600 (difference is due to different

choices of spectral windows; see S.2 in Supplementary Information).

The exponential schedules in (a) and (b) were both matched to 3.7 Hz
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vary among 15 averaged schedules, each the result of

averaging 100 individual schedules together. This obser-

vation that averaged schedules are not deterministic

therefore is seen to be consistent with recommendations

that schedules retain a random character to avoid compli-

cations with the point spread function (Hoch et al. 2008).

An additional interesting conclusion is reached from

considering Fig. 8. Achieving progressively lower levels of

sparseness has little to offer in improving performance

criteria since the maximum theoretical enhancement is

already closely reached by 12.5 or 25 % reduction, and

since significant penalties in gap size are incurred when

fewer samples are retained. Also, point spread functions

become increasingly complex as sparsity increases (Ma-

ciejewski et al. 2012).

Discussion

Non-uniform sampling following an exponential density

provides an enhancement of the intrinsic SNR (iSNR) of

the raw time domain data of decaying NMR signals that is

fully under user control if knowledge of the signal enve-

lope is available (Eq. (1) and prior citations). Enhance-

ments are significant and can approach two fold, even

exceeding this if the user is willing to accept some loss of

resolution.

However, there is limited potential at this time for NUS-

based signal enhancements to improve many 3D biomo-

lecular experimentation in liquids. The NUS-based

enhancements are only significant for long evolution times

exceeding 1T2, and it is usually prohibitive to achieve these

evolution times when pursing typical 3D-NMR backbone

and sidechain assignment experiments (Rovnyak et al.

2004). It is also appreciated that NUS cannot enhance the

raw time domain data of constant-time (non-decaying)

signals and so can only be used for time savings or to reach

the maximum available evolution in constant-time periods

(Schmieder et al. 1994). In contrast, NUS-based sensitivity

enhancements are ideally suited for achieving near-maxi-

mum iSNR improvements in many biosolids experiments

where relaxation times are more favorable and for which

CT dimensions are still not commonly employed; com-

pounding the effect in multiple dimensions of biosolids

NMR achieves dramatic enhancement that are on the same

scale as cryogenic probes (Paramasivam et al. 2012).

Compelling NUS-based sensitivity enhancements are

achieved in 2D-NMR of dilute natural products, where it is

necessary to reach new detection limits without compro-

mising resolution (Palmer et al. 2013). Yet more work is

needed to determine if useful NUS-based enhancements

could be achieved in typical backbone and side chain 3D-

NMR liquid phase experiments of proteins. For example, it

is worth studying what the trade-offs would be in reverting

constant-time dimensions to decaying dimensions in order

to have access to NUS-based enhancements.

This work arrives at three general regimes in employing

NUS-based enhancement in biological samples that are

distinguished on the basis of constraints on the line shape

in the NUS recorded dimension.

One case is to place more focus on optimizing sensi-

tivity than on preserving high resolution. We identify one

class of bioNMR experiments in liquids that is ideally

suited to reap NUS-based signal enhancements: NUS

enables recording sensitive and resolved 1H,15N-HSQC’s

on natural abundance protein samples on relatively short

time frames (ca. 60–90 min in this work), that can be even

shorter for many investigators depending on available

instrumentation, and which are shown to be inaccessible by

uniform sampling in the same time. Indeed, comparable
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200

300

400

Maximum Gap Size

n=1

n=10

n=100
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Fig. 8 Randomly generated sinusoidal NUS sampling schedules

were analyzed for their enhancement and gap characteristics as a

function of averaging together 1, 10 or 100 schedules. The retention

of samples is indicated on the figures and was based on a uniform grid

of 1,024 samples. Each box summarizes results from analyzing 15

schedules: extrema are the minimum and maximum values, and the

median is the solid black line. See text for discussion
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spectra could only be obtained with uniform sampling if

the total experimental time was about four fold longer (data

not shown). Recording 1H,15N-HSQC’s on natural abun-

dance samples is recognized as a problem of optimizing

sensitivity over resolution, and so is able to accept some

moderate line broadening in order to take advantage of

enhancements that exceed two-fold (Fig. 1). In this work,

the line broadening was ca. 30 % in tests reported here

(Fig. 4cd) in which the sampling decay was about three

times faster than the signal decay. This degree of broad-

ening does not strongly impact the final spectra since the

use of NUS still allows for exploring long evolution times,

so that resolution remains very favorable overall.

An intermediate criterion is also identified here. This

work shows in two independent classes of carefully

designed tests that when the density of samples is matched

or is weakly biased relative to the decay of the signal, then

the line width at half maximum is closely conserved rela-

tive to the line width measured from uniform sampling. At

present this regime of NUS is probably of greatest interest

to most spectroscopists, and it is reassuring to see that only

approximate knowledge of the average sample T2 value is

needed to perform NUS and be confident that line widths

are conserved (again, technically T2* value since it is the

net signal envelope that is the crucial basis for achieve

NUS enhancements of iSNR). Yet a very weak peak dis-

tortion can be observed near the base of peaks in this case

that is negligible in some cases but can be more observable

in noisy or crowded spectra.

Therefore, in response to the weak line shape changes

with matched exponential NUS, this work has also

explored a third scenario of the application of NUS-based

enhancements in which one wishes to still obtain a useful

enhancement, but no degradation to peak shape can be

tolerated. This work has shown through careful simulations

and experiments that weak broadening of the base of peaks

can result even from matched exponential NUS, even when

the line width at half maximum is not changed. We report

that an alternative density based on a quarter-wave segment

of a sinusoid does not result in such peak distortions and

yet still delivers the same iSNR enhancement as a matched

exponential NUS schedule. Verification was obtained of

the improved performance of this sinusoidal schedule over

exponential sampling by analyzing the peak shapes from

2D-HSQC and 2D-HMBC experimentation on a natural

product.

It follows from these results that for any experiment in

which one would choose to record evolution times ca. 3T2,

and also to operate in the intermediate or the highly con-

servative regime of achieving sensitivity relative to reso-

lution, then the quarter-wave sinusoidal density is always

preferable to a matched exponential schedule. The sinsu-

soidal density does not generalize to steeper biasing

towards earlier times, which raises an additional issue that

needs more work. Specifically, it is worthwhile to discover

alternatives to strongly biased exponential schedules that

may not sacrifice as much peak shape to achieve higher

enhancements. For the present, if sensitivity is the user’s

only goal, then biasing the exponential density up to three-

fold is still the only choice.

A consideration of sinusoidal schedules supports the

current understanding of best practices in NUS schedule

design and leads to some additional generalizations.

Sparser schedules improve agreement with the desired

sampling density, but also incur greater gaps and incur

more complex point spread functions that must be decon-

colved from the frequency domain signals. Limiting returns

in any one dimension are encountered for about four-fold

sample reduction. This does mean also, when employing

NUS in N multiple indirect dimensions, that data reduction

by a factor of 4N is a worthy goal. Individual circumstances

still apply. The degree of reduction that can be tolerated is

greater if signals are strong, but lower if samples must be

selected from a very short uniform grid. For example,

selecting 8 samples from a uniform grid of 32 achieves

four-fold reduction, but detected signals may be under-

constrained by having only 8 samples.

Finally, this work wishes to advocate for distinguishing

the intrinsic SNR of the raw time domain data as the

critical metric for gauging NUS-based sensitivity

improvements. Analysis of spectra show that exponential

NUS enhances the ability to detect new peaks and to enable

new science, and the basis for user control over these gains

is the intrinsic SNR of the raw data.
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